Wind Ultrasonic

Model Brief Description Ultrasonic 4.3830.2x.xxx Anemometer 3D The Ultrasonic Anemometer 3D serves for the 3-dimensional acquisition of the horizontal and vertical components of the wind velocity, the wind direction as well as of the acoustic-virtual temperature. More than 70 different measurement values are available, for ex.: Wind velocity in X/Y/Zdirection Total wind velocity • Wind velocity azimuth Wind direction azimuth Wind velocity elevation • Wind direction elevation • Acoustic-virtual temperature • Standard deviation of the wind velocity in X/Y/Zdirection • Standard deviation of the total wind velocity • Standard deviation of the

- wind velocity azimuth • Standard deviation of the
- wind direction azimuth • Standard deviation of the wind direction elevation
- Standard deviation of the acoustic-virtual temperature
- Statistic functions such as variance, co-variance, turbulence intensity
- Wind velocity X/Y/Z of the gust acc. to WMO
- Wind direction of the gust (elevation) acc. to WMO

The instrument is especially suited for the use in the fields of

- Meteorology
- Climatology
- Traffic engineering, aviation and navigation
- Indoor flow measurement
- And in alpine field of application

The ultrasonic measurement principle allows, compared to the classic anemometers, an inertia-free measurement of running variable dimensions with highest precision and accuracy. It is especially suited for the measurement of gustand peak values.

Order No.

Technical Data

Wind velocity Meas. range Resolution

Accuracy

Direction Meas. range Azimuth Flevation Resolution Accuracy

Virtual temp. Meas. range Resolution Accuracy

Data output digital Interface Baud rate Output

Output rate

Status signal

Data output analogue

Electr. output (for wind vectors XYZ or wv (azimuth), wd (azimuth) and acoustic-virtual temp. Load Current output Voltage output

or as: data input output dissolution

General Bus operation Operat. voltage Electronics with heating

Electr. connection Mounting Fixing boring Housing material

Protection Dimensions Weight

0-65 m/s 0.1 m/s (standard) 0.01 (user-defined) ±0.1 m/s rms (0-5 m/s) ±2% rms (< 5 m/s)

0-360° -90°... +90° 1° ±2°

-40 ... +70 °C 0.1 K ±0.5 K

RS 485/422 1200 - 921600 instantan. values, mean values. standard deviations, etc. 1 per 1 msec. up to 1 per 60 sec.

heating distance error, distance temperat.

0-20 mA/0-10 V or 4-20 mA/2-10 V

max. 400 Ω min. 4000 Ω

3 x 0-10 V serial 16 bit

up to 98 instruments 8-24 V DC or 12-28 V AC/2.5 VA 24 V AC/DC, typ 150 VA 8 pole plug onto a mast tube 11/2" Ø 50 x 40 mm aluminium and stainless steel (V4A) IP 65 600 x 300 mm 1.5 kg

Wind Ultrasonic

Model Brief Description	Order No.	Technical Data	
Continuation of page 6			
The measurement values can be output digitally and/or in analogue form.			
The serial or analogue output of the data is carried out alternatively as instantaneous value or with selectable time frame.			$< 1_{>}$
If necessary, the sensor arms and the middle rod are automatically heated in case of critical ambient temperatures. Thanks to the additionally installed ultrasonic converter heating the instrument is suited even for the difficult application in locations where frequently icing is to be expected.			